Skip to main content

Post #3: Growth of Big Data

There was an incredible amount of internet growth in the 1990s, and personal computers became steadily more powerful and more flexible. Internet growth was based both on Tim Berners-Lee’s efforts, CERN’s free access, and access to individual personal computers.
In 2005, Big Data, which had been used without a name, was labelled by Roger Mougalas. He was referring to a large set of data that, at the time, was almost impossible to manage and process using the traditional business intelligence tools available. Additionally, Hadoop, which could handle Big Data, was created in 2005. Hadoop was based on an open-sourced software framework called Nutch, and was merged with Google’s MapReduce. Hadoop is an Open Source software framework, and can process structured and unstructured data, from almost all digital sources. Because of this flexibility, Hadoop (and its sibling frameworks) can process Big Data.
Big Data is revolutionising entire industries and changing human culture and behaviour. It is a result of the information age and is changing how people exercise, create music, and work. The following provides some examples of Big Data use.
  • Big Data is being used in healthcare to map disease outbreaks and test alternative treatments.
  • NASA uses Big Data to explore the universe.
  • The music industry replaces intuition with Big Data studies.
  • Utilities use Big Data to study customer behaviour and avoid blackouts.
  • Nike uses health monitoring wearable' to track customers and provide feedback on their health.
  • Big Data is being used by cyber security to stop cyber crime.

Comments

Popular posts from this blog

FutureLearn Week 2: Post 1 of 4

Open data has been increasing for some time now with data being made open on various sites globally. There are many advantages to having open data, these advantages include being able to share public data sets so that they can be compared. These open data sources can also be used for environmental purposes or even health issues. Disadvantages of open data would include the fact that the site providing the data would be inherently biased and formed in the opinion of the creator.

FutureLearn Week 2: Post 3 of 4

Two of the biggest challenges of big data is Analysing and Visualising the data. Firstly with analysing the data, the size of big data files can sometimes be substantial, there are many things that must be considered before downloading the data, for example the file size, how long the data file will take to download, will all of it be necessary or will part of the file suffice and is there enough storage space within the system itself. Visualisation is way to represent the data in a way that is easier to understand such as word clouds and things of the like. This will aid users in seeing the prominent and key terms from the analysis of the data sets. The first step after downloading the data would be to quality check it to ensure that each field had the appropriate data types in each field and to ensure that the user understood the meaning of each field. Keeping a copy of the original data would be essential as well as each documented version change for each stage of visualisation....