Skip to main content

Post 7: (Question 8): Characteristics of big data analysis

Within big data there is always a will to manage this data and to do this the data first needs to be characterised and to organise our understanding of this big data. Due to this Big Data can and is defined by more than one characteristic. There are in fact 3 characteristics that need to be taken into account and these are Volume, Velocity and Variety. Volume refers to the size of the data that is continuously growing within the world of computing and this raises the question of the quantity of the data itself. Velocity refers to the speed at which the data is processed and this can also be questioned within itself. Variety however refers to the varying types of data, this allows us to question just how each data format differs from one another. 
These characteristics also raise some very important questions that allow us and aid us in deciphering Big Data but they also aid us in learning how to deal with massive and varying data at a manageable pace and within a reasonable time frame so that the value of the data can be deciphered, be analysed and a subsequent response can be provided as swiftly as possible. 

Comments

Popular posts from this blog

Post #3: Growth of Big Data

There was an incredible amount of internet growth in the 1990s, and personal computers became steadily more powerful and more flexible. Internet growth was based both on Tim Berners-Lee’s efforts, CERN’s free access, and access to individual personal computers. In 2005, Big Data, which had been used without a name, was labelled by Roger Mougalas. He was referring to a large set of data that, at the time, was almost impossible to manage and process using the traditional business intelligence tools available. Additionally, Hadoop, which could handle Big Data, was created in 2005. Hadoop was based on an open-sourced software framework called Nutch, and was merged with Google’s MapReduce. Hadoop is an Open Source software framework, and can process structured and unstructured data, from almost all digital sources. Because of this flexibility, Hadoop (and its sibling frameworks) can process Big Data. Big Data is revolutionising entire industries and changing hum...

FutureLearn Week 2: Post 3 of 4

Two of the biggest challenges of big data is Analysing and Visualising the data. Firstly with analysing the data, the size of big data files can sometimes be substantial, there are many things that must be considered before downloading the data, for example the file size, how long the data file will take to download, will all of it be necessary or will part of the file suffice and is there enough storage space within the system itself. Visualisation is way to represent the data in a way that is easier to understand such as word clouds and things of the like. This will aid users in seeing the prominent and key terms from the analysis of the data sets. The first step after downloading the data would be to quality check it to ensure that each field had the appropriate data types in each field and to ensure that the user understood the meaning of each field. Keeping a copy of the original data would be essential as well as each documented version change for each stage of visualisation....

Post #4: Reasons for the Growth of Big Data

Big Data is continuously growing, each and every organisation is dealing with more and more data with each passing day and this growth shows no signs of slowing down. There are various reasons for this swift increase in growth, I will now discuss a few of these reasons. Business models are one of the main reasons for this exponential growth through the aggressive and continuous acquisition and permanent retention of data. Google is a perfect example of a business that is retaining vast amounts of data and this is definitely working in their favour as can be seen by their company growth. Infrastructure capacity is another reason for the increase as the cost of data storage has become incredibly low over the past few years while the capacity seems to be increasing almost doubling in the space of a couple of years.  Business analytics has also seen an increased acceleration in the past few years and is now over a 100 billion dollar market and continues to grow year to year. Regul...